
J .  Fluid Meck. (1994), 1101. 268. pp.  1-36 

Copyright 0 1994 Cambridge University Press 

1 

Crossflow disturbances in three-dimensional 
boundary layers : nonlinear development, wave 

interaction and secondary instability 

By M. R. MALIK, F. LI A N D  C.-L. CHANG 
High Technology Corporation, PO Box 7262, Hampton, VA 23666, USA 

(Received 15 February 1993 and in revised form 16 October 1993) 

Nonlinear stability of a model swept-wing boundary layer, subject to crossflow 
instability, is investigated by numerically solving the governing partial differential 
equations. The three-dimensional boundary layer is unstable to both stationary and 
travelling crossflow disturbances. Nonlinear calculations have been carried out for 
stationary vortices and the computed wall vorticity pattern results in streamwise 
streaks which resemble quite well the surface oil-flow visualizations in swept-wing 
experiments. Other features of the stationary vortex development (half-mushroom 
structure, inflected velocity profiles, vortex doubling, etc.) are also captured in these 
calculations. Nonlinear interaction of the stationary and travelling waves is also 
studied. When initial amplitude of the stationary vortex is larger than the travelling 
mode, the stationary vortex dominates most of the downstream development. When 
the two modes have the same initial amplitude, the travelling mode dominates the 
downstream development owing to its higher growth rate. It is also found that, prior 
to laminar/turbulent transition, the three-dimensional boundary layer is subject to a 
high-frequency secondary instability, which is in agreement with the experiments of 
Poll (1985) and Kohama, Saric & Hoos (1991). The frequency of this secondary 
instability, which resides on top of the stationary crossflow vortex, is an order of 
magnitude higher than the frequency of the most-amplified travelling crossflow mode. 

1. Introduction 
I n  swept-wing flows, a chordwise pressure gradient near the leading edge causes 

inviscid streamlines to be curved in the planes parallel to the wing surface. Associated 
with this streamline curvature is a pressure gradient which acts in a direction normal 
to the streamlines and introduces a secondary flow within the boundary layer. This 
secondary flow, commonly known as crossflow, is subject to inviscid instability due to 
the presence of an inflection point (Gregory, Stuart & Walker 1955) and is the main 
cause of transition in swept-wing flows. Thus, this problem is not only of fundamental 
importance in fluid mechanics but also of prime significance in laminar flow control 
design of swept wings. 

Crossflow instability often results in the formation of stationary corotating vortices 
commonly called crossflow vortices. This phenomenon is observed in swept-wing 
boundary layers as well as in other geometries such as rotating disks and cones. How 
the stationary crossflow vortices lead to turbulence remains unknown. Travelling 
crossflow disturbances are also possible and the role of travelling vs. stationary 
disturbances is a question which needs to be investigated. Another problem which is 
of interest in swept-wing flows is the possibility of interaction between the inviscid 
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crossflow disturbances and viscous streamwise instability. Crossflow disturbances are 
amplified in thc negative pressure rise region near the wing leading edge, while 
Tollmien-Schlichting (TS) waves (viscous instability of streamwise profiles) are 
amplified in the flat pressure region of the wing midchord. The possible interaction of 
these two types of disturbance may be quite significant in the successful design of 
laminar flow control wings. 

Experimental investigations into the nature of the swept-wing boundary-layer 
instability, at its linear and nonlinear stage, have been carried out by Bippes and 
coworkers (see Bippes 199 1 ; Muller & Bippes 1988; Muller 1989) at DLR, by Saric and 
coworkers (see Dagenhart et al. 1989; Saric, Dagenhart & Mousseux 1989; Kohama, 
Saric & Hoos 1991) at Arizona State University and by Arnal and coworkers (see 
Arnal & Juillen 1987) at ONERA/CERT. Experiments at DLR were performed on a 
swept-plate model with an imposed pressure gradient. A displacement body above the 
plate was used to generate the cp distribution which varied almost linearly with 
chordwise distance. Saric and Arnal used infinite-swept aerofoils in their low-speed 
experiments. 

Both stationary and travelling crossflow disturbances were observed in these 
experiments, as well as in the experiment of Poll (1985) on a swept cylinder. Miiller & 
Bippes (1988) found that the stationary vortices, as well as travelling disturbances, 
reached nonlinear saturation in their experiment. However, they did not notice any 
explosive secondary instability leading to transition. On the other hand, Kohama et al. 
(1991) observed a high-frequency secondary instability prior to transition in their 
swept-wing expcriment, where pressure gradient remained favourable ruling out any 
possibility of TS wave amplification. The frequency of this secondary instability was an 
order of magnitude higher than the frequency of the most-amplified travelling 
disturbance given by the linear theory. They concluded that, even though the travelling 
crossflow disturbances are observed, the transition process in this three-dimensional 
boundary layer is dominated by the stationary vortices and the associated secondary 
instability. Poll (1985) had also observed a high-frequency disturbance in his swept- 
cylinder experiment. 

Muller & Bippes (1988) also studied the effect of free-stream turbulence on the 
instability behaviour in their experiment. They found that at ‘low’ levels (0.05 %) of 
free-stream turbulence, stationary disturbances amplified to large amplitudes but these 
large amplitudes of the stationary vortices did not necessarily lead to early transition. 
The experiments performed in wind tunnels with higher turbulence levels (0.15 and 
0.3 YO) showed weaker growth of stationary disturbances but earlier transition due to 
stronger travelling disturbances. They concluded that travelling waves, and not the 
stationary vortices, play the major role in the transition process. Their experimental 
results also seem to suggest an early nonlinear interaction between stationary and 
travelling crossflow disturbances. 

Theoretical investigations into linear and nonlinear stability of three-dimensional 
boundary layers have been carried out by Balachandar, Streett & Malik (1992), Fischer 
& Dallmann (1991), Malik (1986), Meyer & Kleiser (1988) and Reed (1987). Fischer 
& Dallmann used secondary instability theory and Meyer & Kleiser used direct 
simulation of Navier-Stokes equations to study the swept-plate experiment of Miiller 
& Bippes (1988). Fischer & Dallmann argued that the travelling disturbances observed 
in the DLR experiment are secondary disturbances of the mean flow modulated by the 
stationary vortices and should not be thought of as the primary instability of the three- 
dimensional boundary-layer flow. The direct numerical simulation of Meyer & Kleiser 
found nonlinear equilibrium states for stationary as well as travelling disturbances, in 
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agreement with the DLR experiment. Similar equilibrium states for stationary vortices 
were computed by Malik (1986) in rotating-disk boundary layer. Balachandar et al. 
(1992) performed a secondary instability analysis of the rotating-disk boundary layer 
where the stationary vortices constituted the primary instability. They were able to find 
a high-frequency secondary instability similar to the one observed by Kohama ( 1984, 
1987) in a rotating-disk boundary layer. 

All these experimental and theoretical investigations consider a class of mean flows 
that is only unstable to inflectional crossflow disturbances and do not support TS wave 
amplification. Results from various experiments appear to suggest that, for this class 
of flow, there are at least two possible scenarios for transition. If the free-stream 
turbulence level is very small, i.e. the initial amplitude of the non-stationary 
disturbances is small relative to the stationary disturbances which most certainly are 
introduced at local surface imperfections, then stationary disturbances dominate the 
initial stage of the disturbance growth leading to a high-frequency secondary instability 
resulting in final breakdown. When the initial amplitude of the travelling modes is not 
small, nonlinear interaction between these travelling modes and stationary vortices is 
present and the character of the final breakdown is influenced by the relative 
amplitudes of the stationary vortices and the travelling modes. The other class of flow, 
where TS waves could amplify, is also of technological importance but has not been 
studied either experimentally or theoretically. 

The objective of this research is to study various wave-interaction mechanisms and 
laminar-flow breakdown in three-dimensional boundary layers. Previous linear and 
nonlinear theoretical investigations have been performed by using the parallel-flow 
approximation and have been local in nature. This study includes non-parallel effects 
and sets up the problem within the framework of nonlinear parabolized stability 
equations (PSE). Intermodal interaction and the effect of initial conditions can also be 
studied by using this approach. Basic insight into the physical mechanisms involved in 
swept-wing flow transition can be achieved by considering simple model flows. One 
such flow is the swept Hiemenz flow in which the interaction of stationary and 
travelling crossflow disturbances can be studied. In this paper we study linear and 
nonlinear crossflow disturbances as well as the interaction between stationary and 
travelling modes. We also study secondary instability of the three-dimensional mean 
flow modulated by the stationary vortices. Section 2 describes the basic flow for the 
swept Hiemenz problem and the associated PSE analysis is given in $ 3 .  The results for 
linear and nonlinear stability analysis and wave interactions are given in $4. Section 5 
describes the results from secondary instability analysis and the conclusions are given 
in $6.  

2. The swept Hiemenz problem 

represented as 

where U, is the velocity along the coordinate .x* and c, c,, etc. are constants. In two- 
dimensional stagnation-point flow, only the first term in the series (2.1) is retained and, 
hence, the velocity Ua increases linearly with distance x*, i.e. 

The flow past a circular cylinder, outside the viscous boundary layer, can be 

qn = cx*+c,.u*3+cax*" ..., (2.1) 

u, = ex*. (2.2) 

If we consider the Cartesian coordinate system x*, y* ,  z*, then (2.2) gives the far-field 
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(y* +K) solution of the impinging flow on a plate along x* which we define here by 
y* = 0. The associated viscous problem was first investigated by Hiemenz who found 
an exact solution which is named after him. This stagnation flow was found to be stable 
to infinitesimally small disturbances propagating along z* by Wilson & Gladwell 
(1978). 

The swept Hiemenz problem is constructed by introducing a velocity component 
W, along the z* axis, which amounts to changing the inclination of the impinging 
stream with respect to z*. The flow is symmetric about the line x* = 0, which is called 
the attachment line. Linear and nonlinear stability of the attachment-line boundary 
layer has been studied by Hall, Malik & Poll (1984) and Spalart (1988). In this paper 
we study the stability of this flow for x* > 0 as was recently done by Spalart (1989) 
using full Navier-Stokes equations. 

2.1. The basicjow 
We consider the flow of a viscous incompressible fluid of kinematic viscosity v. Let 
I = (v/c)' be a typical thickness of the boundary layer which is used here as the 
lengthscale. We note that I is independent of x*. Thus, we have the scaled coordinates 
x, y, z given as 

(x, y, z )  = ( x * / l ,  y*/ l ,  z*/I) .  

We also define two Reynolds numbers R and R :  

R = U, 1/11, 

a = w, I/v. 

From (2.2) and (2.3), it follows that 

R = x * / l  = X. 

6) = arctan (W,/U,) = arctan ( R / R ) .  

(2.5) 

The local angle H of the inviscid streamline, with respect to the x-axis, is given as 

(2.6) 

We now look for a solution to the Navier-Stokes equations which satisfies the 
following conditions : 

(2.7) 

u* + urn, w* + w,, y* +m, (2.8) 

u* = Z'* = w* = 0, y* = 0, 

where u*, u*, w* are velocity components in the x*, y*, z* directions, respectively. It is 
convenient to define a stream function @ so that 

u* = aqay* ,  v* = -aQ/ax* 

and @ = x*(cv)ij(y). 

If we use W, as the velocity scale, then 

Similarly, 

u = u*/  w, = (x /R) f ' (y ) ,  

u =  U*/W, = -(l/R)j(y). 

(2.9) 

(2.10) 

(2.11) 
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where f and g are governed by the ordinary differential equations 
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f”’ +ff” + (1 -f’Z) = 0, (2.12) 

g” +fg’ = 0, (2.13) 

The mean flow derivatives needed in the stability analysis below can be written as 
where primes denote differentiation with respect to y. 

~ 

U’ fi = g‘, wyu = g”, u1, = (l/R)f’. 

Numerical solution of (2.12) and (2.13) thus yields the mean flow and its derivatives 
without any additional approximation and the boundary-layer thickness does not vary 
with x. 

3. PSE analysis for three-dimensional boundary layers 
Parabolized stability equations (PSE) for linear and nonlinear disturbances in two- 

dimensional boundary layers have been used by Herbert (199 1) and Bertolotti, Herbert 
& Spalart (1992) for incompressible flow where they used a stream-function 
formulation of the governing equations. In the present three-dimensional boundary- 
layer study, we follow the work of Chang et al. (1991) for compressible flow and 
formulate the incompressible stability problem using primitive variables in Cartesian 
coordinates x, y ,  and z .  The basic flow is perturbed by fluctuations in the flow, i.e. the 
total field can be decomposed into a mean value (solution of (2.12) and (2.13)) and a 
perturbation quantity 

u = E S Q ,  c =  v+c, 11, = M;+1?, p =p+p”, (3.1) 

where p is the pressure. Substituting (3.1) into the incompressible Navier-Stokes 
equations and subtracting from it the steady mean flow, we obtain the nonlinear 
disturbance equations as 

where the left-hand side contains only linear operators operating on the disturbance 
vector 4 = (u“, C, IZ, p”) and the right-hand-side forcing vector F is due to nonlinear 
interaction and includes all nonlinear terms associated with the disturbances. The 
right-hand side is given as 

-24 -a4 F =  -A---B--C-.  
2x 23.’ az 

In the above, r i s  the diagonal matrix [ I ,  1, 1, 01 while A, B, C are given as 

(3.3) 

U 0 0 l  0 0 0  0 0 0  

0 0 u o  o o v o  
1 0 0 0  0 1 0 0  0 0 1 0  

A =  [o u 0 “1, .=[: D 0 ‘1, .-“‘ 0 w 0 w 0 1 ’  
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and A”, B, (? are similar to A, B, C except that the overbars are replaced with tildes and 
all ones are dropped. The coefficient matrices D, E,, E,, E, are given as 

We assume that the given disturbance is periodic in time and in the spanwise 
direction; thus, the disturbance function 4 can be expressed by the following Fourier 
series : 

m o o  

4 = C C Xm,(x.y) eJ(T~Pz-m~~f) (3.4) 
m--m n=-m 

Here, the frequency w and wavenumber are chosen such that the longest period and 
wavelength are 2n/w and 2n/P in the temporal and spanwise domains, respectively. 
For most stability problems of interest, it is sufficient to truncate (3.4) to only a finite 
number of modes 

m=-M n=-N 

where M and N represent one-half the number of modes kept in the truncated Fourier 
series. Substituting (3.5) in (3.2) we obtain governing equations for xnlll which are 
elliptic. In order to facilitate the solution of these equations we decompose the 
disturbance into a fast-varying wave-like part and a slowly varying shape function and 
write xmn as 

Xmn(-%Y) = Ul,,(x,y) 4x-4 (3.6a) 

(3.6b) 

where Ym, is the shape function (Li,,,, Cmn, etc.) for the Fourier mode (mu, np)  and GI.,, 

is the associated streamwise (complex) wavenumber. With a proper choice of a,, in 
(3.6h), the arbitrariness in (3.6a) can be removed and the equations for YnL, can be 
parabolized. In other words, a,, is chosen such that variation of !Pmn with x is 
minimized which allows the approximation z2 Ym,/2.x2 = 0. The PSEs for the shape 
function of a single Fourier mode (m,n) can be written as 

where matrices G,,, Am, and B,, are given by 

G,,, = -imwr+ia,,A+inPC+D-E, [ i-- ‘:;n a;,) +nZ pa E ~ ,  
- 

A,, = A -2ia,, E,, 
- 
B,, = B. 



Csossfo~r. disturbances in thsee-dimensional boundary layers 7 

is the Fourier component of the total forcing, F, The nonlinear forcing function 
and can be evaluated by the Fourier series expansion 

M-1 N-1 

(3.8) i (npz-mwt)  
%L.Y?Z> t )  = c c F,,&Gy)e 

m=-M n=-1%' 

The Fourier decomposition of (3.8) can be done by using the fast fourier transform 
(FFT) of F, which is evaluated numerically in the physical space. 

The PSEs (3.7) can be used to study nonlinear interaction of various modes (e.g. 
crossflow/crossflow, crossflow/TS, etc.) or one can study the onset of transition to 
turbulence provided appropriate initial conditions are prescribed. For small dis- 
turbances, Fcan be neglected and one obtains linear PSEs (after dropping the subscript 
11), 

which can be solved to study the effect of non-parallel flow or that of initial conditions. 
If the non-parallel effect is ignored, then (3.9) essentially reduces to the Orr- 
Sommerfeld equation. 

The streamwise wavenumber in (3.6b) needs to be determined in order to solve the 
equations by a marching scheme. This procedure is given in Chang et al. (1991). Here 
we briefly describe it for the linear equation (3.9). In this case, the evolution of the 
shape function is monitored during the process of marching and the wavenumber is 
updated by local iterations at a given x according to the change in Y. At a given 
location x,, let the streamwise wavenumber be given by 01, and then express $ as 

(3.10) 

The change of the shape function Y can be approximated by the following Taylor 
series expansion 

where is the 
equation can be 

Substituting (3.1 
given by 

truncated to the first order 

c? Y, 
Y(X, y) = q + ~ (x - XI) + . . . , 

ax 

shape function at x = xl. To an accuracy of O(x-xl), the above 
further expressed as 

(3.11) 

I) into (3.10), we have the 'effective' wavenumber in the vicinity of x, 

(3.12) 

The real part of this effective wavenumber represents the phase change of the 
disturbance while the imaginary part gives the growth rate. A distl-rbance is unstable 
if the imaginary part is less than zero. Since the shape function vector 3: depends upon 
y and contains four dependent variables (Li, il, etc.), the value of a computed by (3.12) 
will be a function of the $7-coordinate and the selected dependcnt variable. One can, for 
example, use the shape function Li and they location where li reaches its local maximum 
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to update the wavenumber at any given x-station as the disturbance evolves 
downstream. An alternative which is used here is to consider the following integral 
condition : 

(3.13) 

which removes the dependence of a on y .  If q is a particular component of Yl then the 
dependence of a on is retained in (3.13). For three-dimensional boundary layers we 
choose q to be a vector with components (zi,G,i?). Equation (3.13) is used in the 
iterative solution of (3.9) until the second term in (3.13) vanishes to a prescribed 
tolerance. An additional condition (Chang et al. 1991 ; Malik & Li 1993) needs to be 
satisfied in order to obtain solution of (3.7) by the space marching approach. 

Numerical solution of the parabolized stability equations requires discretization in 
both the x- and y-directions. We discretize the streamwise derivative by a backward 
Euler step and wall-normal derivatives by fourth-order-accurate compact differences 
(see Malik, Chuang & Hussaini 1982). Homogeneous boundary conditions at the wall 
and in the free stream are imposed. The initial conditions are obtained by a local 
approximation to (3.9) and by solving the associated eigenvalue problem. Since the 
wave information is absorbed in the wavenumber a (3.6b), one needs to use a few 
marching steps per wavelength to obtain an accurate solution of the wave evolution. 
Calculations for two-dimensional boundary layers show that PSE results with only 
three steps per wavelength agree quite well with very accurate Navier-Stokes 
computations using 60 grid points per wavelength (see J o s h ,  Streett & Chang 1992). 

4. Linear and nonlinear stability analysis and wave interaction 
4.1 . Quasi-parallel linear stability 

In order to determine the relevant physical parameter space, it is appropriate to first 
give some results from quasi-parallel linear stability theory. We consider two cases : 
R = 250 and 500. Hall ef al. (1984) found that the attachment-line boundary layer 
(x = 0) is stable to infinitesimal disturbances up to R = 583.1. Thus, for the two cases 
considered here, the attachment-line boundary layer is stable. In the present study, we 
are interested in the crossflow disturbances that will become unstable away from the 
attachment-line (x 1). Figure 1 shows the mean velocity profiles in directions 
tangential and across the inviscid stream at R = 500 and R = 500. The velocity profiles 

q = ucosH+wsinH, 

U, = usinH-EcosH. 

where the streamline angle H is defined in (2.6). These velocity profiles have been scaled 
with spanwise inviscid velocity qc. It is clear from (2.6) that 0 decreases with R or x 
as the flow turns away from the attachment line towards the free-stream direction. This 
is depicted in figure 2 where the angle 8, along with the crossflow Reynolds number R,, 
(defined below), is plotted for R = 250 and 500. 

Crossflow instability is associated with the inflectional velocity profile V, which, for 
swept wings, is positive towards the centre of curvature of the streamline. The flow 
becomes unstable when crossflow Reynolds number R,, 3 40, where R, is defined by 

and U, are defined as 

R, = G$.l/JG (4.1) 

where r/z is the maximum value of the crossflow velocity V, and 80,1 is the thickness 
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FIGURE 1. Streamwise (-) and crossflow U, (. . . . . .) velocity profiles in 
the swept-Hiemenz flow. R = R = 500. 
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FIGURE 2.  Variation of inviscid streamline angle (0) and crossflow Reynolds number (Ref). 
-, R = 250; ---, R = 500. 

where the crossflow velocity has dropped to 10% of q. The distribution of the 
crossflow Reynolds number R ,  is given for the two cases in figure 2. The value of R ,  
exceeds about 50 at R = 200 and, hence, the instability will onset at R < 200 for both 
cases. The maximum value of R,, is about 150 for R = 250 and about 270 for I? = 500. 
In swept-wing flows, transition usually occurs where R ,  becomes of O(200). 

Figure 3 presents results for integrated growth, 
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FIGURE 3. Integrated growth for fixed spanwise wavenumber p = 0.4. -, F = 0; 
, F = 0.75 x lo-*. _ _ ~  
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FIGURE 4. Quasi-parallel growth rate for positive and negative /3 a t  R = 500. 
-, R = 300; ---, R = 650. 

using the quasi-parallel growth rate crp = --a,. Calculations are performed for 
stationary as well as travelling disturbances with frequency F = 0.75 x lo-' (where 
F =  27cljf;lW:-, f being the frequency in Hertz) at both R. These calculations are 
performed for a fixed spanwise wavenumber of 0.4 which is close to, but not quite (see 
figure 4 below), the most-amplified wavenuinber for the flow under study. It is clear 
that travelling disturbances amplify more than the stationary disturbances according 
to linear theory. However, stationary disturbances are found to dominate when 
experiments are performed in low-disturbance wind tunnels. This is due to the lower 
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FIGURE 5. Growth rates (most amplified) and orientation (i) of  the two families of unstable 
modes at R = 500, R = 300. 

initial amplitude of travelling modes (see the work of Choudhari & Streett 1990 on the 
receptivity of stationary and travelling disturbances). 

The variation of spatial growth rate with wavenumber /3 is given in figure 4 for the 
two frequencies. There are two curves associated with F = 0.75 x lopJ, one with 
positive ,8 and another with negative B, the latter with smaller growth rates. The 
stationary vortex and B > 0 travelling disturbance has peak growth rate at /3 z 0.35 as 
shown in the figure for R = 300. Downstream, the peak shifts to higher wavenumbers 
and lies, for example, at /3 z 0.45, R = 650. The two families of unstable travelling 
disturbances are again shown in figure 5 where the growth rate of the most-amplified 
(among various wave orientations) disturbance is plotted as a function of frequency. 
The family with high growth rates has its wave vector oriented at positive angles with 
respect to the inviscid flow streamline (angles measured from the convex side) while the 
family with lower growth rates has its wave vector oriented at negative angles. The 
relative sense of the two modes depends upon the direction of the crossflow with the 
more-amplified mode always oriented opposite to the crossflow direction. In both 
cases, the direction of the group velocity lies at small angles to the inviscid streamline 
direction. Thus, the disturbance energy propagates downstream for both modes a s  also 
noted by Mack (1985). The travelling mode with lower growth rate may be important 
in the nonlinear stage and its interaction with the more amplified travelling mode may 
also induce stationary crossflow vortices when other stimuli, e.g. wall roughness, are 
absent. Furthermore, these two travelling modes along with stationary vortex mode 
constitute a possible resonant triad which may be relevant in the transition process. 

4.2. Non-pnmllel efec'ts 

We now compare the quasi-parallel growth rate results with those obtained by solving 
linear PSEs, (3.9). Figure 6 ( a )  shows the results for R = 250 for stationary vortices 
while figure 6(h) shows the results for a frequency of F = 0.75 x lo-'. In case of PSEs. 
different growLh rate results are obtained for the li-, I:- and +-components of velocity. 
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FIGURF 6. Disturbance growth rate for @ = 0.4 and i? = 250: ((1) stationary vortex, (b)  travelling 
disturbance with frequency F = 0.75 x 10 '. -, Based on max (a);  ---. based on max (fi), 
based 011 inax (G); . * * . . . , based on energy ; +, parallel calculation. 
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At low R (between 200 and 400) there is a considerable difference between these growth 
rates with Q growth higher than 5 and G but the latter two approach the same value at 
higher Reynolds numbers. Figure 7 shows the growth rate results for R = 500. In this 
case the qualitative trends are the same but there is less difference between the three 
components. The quasi-parallel growth rate is, in general, close to the growth rate 
based upon the $-component, except at lower Reynolds numbers where it lies 
somewhere in between the three growth rates. Thus, one cannot make a strong 

. 
I 

- a  
:I 
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FEURE 7. As figure 6 but for R = 500. 

statement about non-parallel effects except that they are more pronounced at lower R 
and that they are destabilizing if measured by the chordwise velocity component. The 
growth rate can also be defined based upon the total disturbance energy which 
accounts for all the velocity components and growth rates based upon this definition 
suggests that non-parallel effect is usually destabilizing, but there may be some 
exceptions. Spalart (1 989) pointed out that the growth rates from his simulation were 
very close to the quasi-parallel results and that the agreement was better at lower 
Reynolds numbers (R) than at higher Reynolds numbers. Figure 7(a )  shows that this 
is true for the case he considered ( R  = 500, F = 0), but it is not a general statement as 
is evident from the comparison of figures 6 and 7. 
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100 200 300 400 500 600 700 

R 

FIGURE 8. Comparison of linear PSE (-) and Navier-Stokes simulations of Streett (personal 
communication 1993) (---O---) for stationary vortex. ( R  = 500, p = 0.4, growth rate based on 6) .  

Our results for ,!? = 0.4 and R = 500 are compared to the linearized Navier-Stokes 
computation of C. Streett (1993, personal communication) in figure 8. Streett 
performed spatial simulations and solved the full linearized system where the 
disturbances were introduced by spanwise-periodic steady suction and blowing. After 
the initial transients die out, the agreement between the two calculations is excellent 
and it remains so for a large chordwise extent. Good agreement was also found with 
the results of Spalart (1989) (see Malik & Li 1992). The agreement with the full 
Navier-Stokes solution shows that the PSE approximation introduces negligible error 
in our study of the crossflow vortices as disturbance growth rate is a sensitive quantity 
and any error would have shown up in growth rate results. 

4.3. Nonlinear decelopment of stationary crossflow vortices 
Navier-Stokes simulations by Malik (1986) for rotating-disk flow and by Meyer & 
Kleiser (1988) for a Falkner-Skan-Cooke boundary layer showed nonlinear saturation 
of crossflow vortices. Both these calculations employed a temporal approach and, 
therefore, ignored non-parallel effects. Here we present spatial nonlinear calculations 
for R = 500 using PSEs. Initial conditions for the stationary vortex with /3 = 0.4 were 
prescribed at R = 186. It was assumed that the vortex shape is given by the linear 
eigenfunction at that Reynolds number and that the maximum disturbance amplitude 
(max(2 + itz)>:) is 0.001 W,. Figure 9 gives the computed total perturbation wall 
vorticity distribution 

which shows streamwise striations starting at R = 350. The green colour indicates 
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FIGURE 9. Computed wall vorticity distribution in the presence of nonlinear stationary vortices, 
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= 0.4, R = 500. 

negative values while the red indicates positive. The perturbation wall vorticity values 
are very small initially and the signal becomes noticeable (strong) only at R e 420. As 
we will show later, the disturbance amplitude at this location has already reached 
about 4 %. Hence, when these vortices are observed in a flow visualization experiment 
it is almost certain that they have entered the nonlinear stage with growth rates 
somewhat smaller than that given by the linear theory. These striations are evident in 
almost all crossflow experiments (Gray 1952; Gregory et al. 1955; Poll 1985; Saric 
et al. 1989) and result from variation in the wall shear caused by stationary vortices. 
These vortices make a small angle (4-5") with respect to the inviscid free strcarn. 

Figure 10 shows the contours of the u-velocity in the (y, =)-plane at various Reynolds 
numbers ( R  = 400, 500, 600 and 650). Two spanwise wavelengths arc shown and the 
y-coordinate has been stretched for clarity. Crossflow vortices appear to result in a 
half-mushroom-like structure which is shown exaggerated in the figure. The actual 
structure is much more flat as shown in figure 11, drawn to scale. Initially the 
boundary-layer thickness is constant in z; however, as the crossflow instability rolls up 
into vortices, there appear regions of low and high velocity and, therefore, the 
boundary-layer thickness varies considerably in the span as, for example, seen for 
R = 600. In this case the variation is as much as by a factor of about 4. 

There is a region near 2 = I0 and 25 (for R = 600) where the fluid is pushed towards 
the wall, while it is pushed away from the wall near z = 5 and 20. It is these low-velocity 
regions at z = 5 and 20 where oil accumulates in a flow visuali7ation experiment 
resulting in wall streaks such as those shown in figure 9. The half-mushroom structure 
observed in figure 10 is the result of the asymmetry induced by the crosswind. In two- 
dimensional flow over a concave wall which is subject to centrifugal instability, a full 
mushroom structure appears as experiincntally observed by Swearingen & Blackwelder 
(1987) and Peerhossaini & Wesfreid (1988). 

Figure 12 shows a velocity vector plot in the (!>.-)-plane at fixed R of 650. The 
velocities have been projected onto a cross-section normal to the vortex axis. An insight 
into the crossflow vortex structure may be achieved by releasing dye particles at some 
location within the flow field and following their paths as they are carried through the 
fluid in the (y,=)-plane. Two particles are injected at about z = 22; one is released very 
near the wall and the other at y = 1.7. The latter particle rolls into a big vortex centred 
at about y = 2.5 and z = 12. This is the primary crossflow vortex. There is a second 
tiny vortex near the wall centred at about y = 1 and z = 8 to which the particle released 
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FIGURE 10(a, b). For caption see facing page. 

near the wall is attracted. This second vortex which was much weaker at R = 600 has 
also been observed by R.-S. Lin (personal communication, 1992) in his Navier-Stokes 
simulations of the crossflow vortex on a swept wing. It should be stressed, however, 
that the actual flow is fully three-dimensional and varies along x. Hence, these particle 
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FIGURE 11. The structure of the crossflow vortex as viewed from upstream. 

0 5 10 15 20 25 30 

FIGURE 12. Velocity vector plot at R = 650 projected onto a planc perpcndicular to 
the vortex axis. 

traces do not depict the three-dimensional physical picture and have been used merely 
to facilitate the visualization of the crossflow vortices. 

Contours in figure 10(c) show a second low-velocity region near I = 15 and 30; a hot 
wire located at y = 1, for example, will show two velocity defects per wavelength when 
traversed in the spanwise direction. This is depicted in figure 13 which shows that the 
second defect, caused by the 2p mode and sometimes referred to as vortex doubling, 
is much smaller than that caused by the main vortex. In our simulations. the 28 mode 
is excited through nonlinear interaction and its amplitude remains smaller than the 
primary mode with wavenumber pas shown in figure 14 where the amplitude functions 
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FIGURE 13. Variation of vortex axial velocity in the spanwise direction at R = 600. 

for the stationary vortex along with its harmonics and mean flow correction are plotted 
at R = 600. In a laboratory experiment, the 2/3 mode may be excited via surface 
imperfections and the relative amplitudes of 1/? and 2p modes may be different from 
the present case. The disturbance amplitude at R = 600 has reached to about 30% 
(when scaled with W,) with the maximum meanflow correction of about 15%. In a 
laboratory experiment, this picture will be altered owing to possible secondary 
instabilities and interaction with travelling modes. 

Figure 15 shows the velocity profile along the crossflow vortex at four different 
locations across it for R = 500. The base flow given by the Hiemenz problcm is also 
included. It can be seen that these profiles become strongly inflectional owing to the 
motion within the crossflow vortex. Such profiles were also noted in the swept-wing 
experiments of Dagenhart et ul. (1989) and Miiller & Bippes (1988). These inflectional 
profilcs as well as the inflectional profiles in z (figure 13) are subject to inviscid 
secondary instabilities which are most likely related to the high-frequency disturbances 
observed by Kohama et al. (1991). We will investigate this aspcct of the problem in a 
later section. Here, we first consider the interaction of travelling and stationary 
crossflow disturbances. 

4.4. Stationury and trawlliuig NWY interaction 
It was pointed out that the experiment of Miiller & Bippes (1988) suggests an early 
nonlinear interaction between stationary arid travelling waves. We now consider such 
interactions in the swept-Hieinenz flow. Our calculations are perforrncd using /i' = 0.4 
for both the stationary and travelling ( F  = 0.75 x disturbances. The initial 
conditions were imposed at R = 186 and the amplitude of the stationary wave was the 
same as in $4.3 above, i.e. 0.1 %. For travelling waves. two different initial amplitudes 
were considered: 0.01 Oh and 0.1 YO. Results for both the cases are discussed below. 

Figure 16 gives the disturbance energy of various modes denoted a s  (0, l), (1, I ) ,  (2, 
2), etc. Here, the first index refers to frequency ro and the second index to spanwise 
wavenumber /j. Thus, mode (2 ,2)  is the harmonic with twice the frequency and twice 
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the wavenumber of the travelling mode. For comparison, the case of stationary vortex 
only is also given. For the stationary vortex case, shown in figure 16(a), the energy 
cascades into 28, 38, 4/3...modes as earlier noted in the simulations by Malik (1986) 
and Meyer & Kleiser (1988). The energy in the mean flow correction mode is of the 
same order as the 2/3 mode. It is probable that the essential features of the nonlinear 
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R = 500. 

development of the stationary crossflow vortex can be captured by a model which 
considers 0, /3 and 2/3 modes. 

The interacting case with stationary vortex amplitude 10 times higher than that of 
the travelling mode is shown in figure 16th). This case is meant to simulate moderately 
low turbulence conditions where wall roughness will introduce the dominant instability 
(i.e. a stationary vortex) and the weak turbulence will introduce travelling disturbances 
with low amplitude. On the other hand, figure 16(a) can be thought of as the case with 
ultra-low turbulence with essentially no travelling modes induced. In contrast, figure 
16(c) is the high-turbulence case where the initial amplitude of the travelling mode is 
equal to the stationary mode. Admittedly, these are all idealized cases, for in the 
natural environment energy input is into a broad band of frequencies and wavenumbers 
which we cannot attempt to tackle in the present framework. 

Figure 16(h) shows that the energy in the stationary as well as the travelling modes 
saturates at about R = 490, the energy in the latter mode remains smaller except near 
the very end at about R = 600 where the two become the same. This is also where the 
energy in mode (1, - 1) supersedes the two primary modes and becomes comparable 
with the mean flow correction mode. The mode (1, - 1) is generated from interaction 
between (1,l)  and (0, - 2) mode and, apparently, the combination of the amplitudes 
is just about right to yield a resonance between the three modes as speculated in 94.1 
above. 

The situation changes when the initial amplitudes of the two waves become the same. 
The travelling mode has the higher energy all the way and it tends to suppress the 
growth of the stationary modes. Both the primary modes saturate earlier, at about 
R = 430 as compared to 490 in figure 16(b). The higher modes gaining the dominant 
energy appear to be (2,2). (3,3), (4,4). ..modes in this case. The suppression (also 
compare figures 17a and 17c below) of the stationary vortices by travelling modes is 
supported by the observation made in the DLR experiment. 

The evolution of the maximum (in y )  disturbance amplitude for the three cases is 
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given in figure 17 on a natural log scale. Amplitudes of all the velocity components are 
given. Initially the spanwise velocity I.i. is higher than the chordwise velocity Zi. Later 
the magnitudes of the two switch as the inviscid streamline angle decreases (note that 
0 = 45" when R = 500). The magnitude of the normal velocity 6 is much lower than Zi 
and 6 for both waves at all R. From figure 17(u) for stationary vortices alone, it is clear 
that the nonlinear N factors (lnA/A,) at R = 650 are 7 and 5 for li and $1. These are 
to be contrasted with the value of about 9 given by quasi-parallel linear calculations 
in figure 3. 

The growth rates of the stationary and travelling waves for the above three cases, 
along with an additional case of a travelling mode only (initial amplitude of 0.1 O h ) ,  are 
given in figure 18. For comparison, the growth rate from linear PSE calculations is also 
given. This plot more clearly shows the behaviour of the two modes discussed with 
reference to figure 16. The growth rate of the stationary vortex (curve 2) begins to 
depart from linear theory at about R = 420. At this location the disturbance amplitude 
is only about 4%.  At R = 450: the growth rate is lower than the linear theory result 
by about 9 YO, but it begins to decrcase rapidly beyond that. The results are similar for 
the travelling mode alone (curve 2) with initial amplitude of 0.1 'A,  Since the travelling 
mode amplifies more rapidly, it reaches saturation earlier and its growth rate begins to 
depart from the linear theory results at  R = 330. For the wave interaction case with 
A, = 0.01 %, the growth rates of the two waves begin to depart from the linear theory 
result at  about R = 390. At R = 450 the two growth rates diKer from the linear results 
by about 18 %, subsequently, dropping sharply, and at R = 500, the stationary and 
travelling disturbance growth rates are lower by about 70 and 76Y0 with respect to 
their linear growth rates. Hence, the results indicate that even for the case with smaller 
initial travelling disturbance amplitude there is some interaction well before R z 500. 
This interaction becomes stronger when the initial amplitudes of the two waves are the 
same (A,s = A ,  = 0.1 Yo). In this case the growth rates begin to depart from the linear 
theory results at R = 330 and by 410 have dropped by 68 YO for the stationary vortex 
and by 39 % for the travelling mode. A close examination of the results show that when 
A, = 0.1 YO, there is no direct effect of the stationary disturbance on the travelling wave 
(curves 3 and 5 collapse) but the growth of the stationary vortex is greatly suppressed 
owing to the presence of higher-amplitude travelling disturbance. It is clear that the 
two modes do interact depcnding upon the initial amplitude, as also inferred by Bippes 
(1991) from his experiments. The nonlinear growth rate behaviour at large R indicates 
that the two primary modes reach a quasi-equilibrium state where the growth rate 
begins to oscillate around a small value. 

In order to shed some more light on the slalionary/travelling mode interaction, we 
consider the case with A ,  = 0.1 %, A ,  = 0.0 1 %, and plot fir,,? in the ( y ,  z)-plane at 
three different Reynolds numbers ( R  = 431, 500 and 600). Here ~7, ,~~,~ is defincd as 

The results are shown in figure 19 for the three locations. Owing to nonlinearity and 
interaction with the stationary mode, travelling disturbances are modulated in the 
spanwise direction. An important observation is that the peak r.m.s. perturbation is 

FIGURE 16. Evolution of integrated (over y )  disturbance energy for various modes a t  R 500; the 
first index refers to  frequency and the second index refers to spanwise wavenumber. (u)  A ,  = 0.1 96, 
A ,  = 0; (b) -4, = 0.1 %I, A ,  = 0.01 Yo; (c) As = 0.1 YO. A ,  = 0.1 YO. (Subscript s denotes stationary 
and r travelling.) 
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near the wall at y z 1 with a second maximum (but with much lower amplitude) 
further away from the wall (see figure 19h). A comparison of figures 19 (h)  and lO(h), 
at R = 500, shows that the peak ii,v,,y occurs in the spanwise region where low-velocity 
fluid is pushed away from the wall. At higher Reynolds number ( R  = 600), there are 
two peaks in d,,, near the wall, apparently associated with the emergence of the 2p 
harmonic of the stationary mode. Michel, Arnal & Juillen (1985) also noted two 
maxima in the r.m.s. value of the streamwise velocity within a spanwise wavelength in 
the ONERA/CERT swept-wing experiment. The magnitude of the maximum value 
was fmmd to be up to about 20% of the resultant inviscid velocity. They also found 
that most of the turbulence energy is contained in the frequency range that is unstable 
according to the linear stability analysis. 

Figure 20 is a plot of the stationary as well as r.m.s. velocity signal (u-component) 
at y = 1.048. Modulation of the travelling disturbances due to the presence of the 
stationary vortex is evident. The peak drms is in the region where a velocity defect 
appears in the stationary signal and the minimum in d,,n,7 occurs where there is a 
velocity excess. However, there is a phase shift of about $r between the maximum in 
li,,,, and the minimum stationary velocity, as evident from results for R = 500. This 
phase shift decreases at higher Reynolds numbers. Miiller & Bippes (1988) reported 
experimental results qualitatively similar to those in figure 20. 

We plot the variation of iir,ns with Reynolds number at y = 1.048 in figure 21, which 
shows the maximum and minimum d,,, as well as d,,, along the path where the 
stationary u-velocity has a maximum and a minimum. The variation of the stationary 
u-velocity with Reynolds number is also shown in the figure. Figure 21 clearly shows 
that in the high (stationary)-velocity region the d,,, component gets saturated but it 
increases to higher amplitudes in the low (stationary)-velocity region. At R = 550, the 
maximum d,,,, reaches about 20% in the low-velocity region. Such high levels, 
although dependent upon the initial disturbance amplitude, are not unexpected in view 
of the experimental evidence provided by Michel et al. (1985). Poll (1985) also observed 
a travelling disturbance with frequency close to the most-amplified disturbance given 
by linear theory. He further noted that close to the surface the amplitude of these 
disturbances can exceed 20 YO of the local mean-flow velocity. However, the r.m.s. 
amplitudes measured by Dagenhart et al. (1989) are much lower, which suggests that 
in their experiment the initial amplitude of travelling modes relative to the stationary 
mode was much lower than used here. Choudhari (1993) estimates that the initial 
amplitude of the travelling mode could be up to two orders of magnitude lower than 
the stationary modes for the receptivity mechanism considered in this study. This may 
possibly be the case in the experiment of Dagenhart et al. (1989). 

4.5. Eflect of nonlinear disturbances on skin friction 
Figure 22 gives the chordwise (C,,) and spanwise (C,,J skin-friction coefficients for all 
three cases. From figure 9 we know that skin friction varies in the spanwise direction. 
However, figure 22 gives the spanwise-averaged value, i.e. only the contribution from 
mean flow distortion is considered. Since w is independent of R, the laminar spanwise 
skin friction remains constant. Similarly, since u increases linearly with R, so does the 
chordwise skin friction when scaled with W:. At some location both C,, and C,, begin 
to depart from their respective laminar values. For cases (a)  and (b)  of figure 16, this 
location is at about R = 450 and from there on it rises significantly. The skin friction 

FIGURE 17. Evolution of maximum (over 1;) amplitude of the disturbance velocity components zi (--~n -) , f i  . (-A--), 3 (-O-) for stationary (open symbols) and travelling (solid symbols) modes. 
( u )  A< = 0.1 %, A, = 0; (b)  A,\ = 0.1 %, A ,  = 0.01 Yo ; (c) A &  = 0.1 O h ,  A, = 0.1 Yo. 
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rise from stationary vortex alone is about 19 % for C,, and 58 '/o for C,, at R = 600. 
The skin friction for case (6) is slightly higher in the beginning but later on it drops 
below case (a). Computations for case (a) were made using N = 2, 9 and 16 in (3.5). 
While there was considerable difference in the skin-friction distribution for N = 2 and 
9, essentially no difference was found between the two higher-resolution cases. For 
cases (h)  and (c) M = N = 9 was used in (3.5). 

In case (c), with higher initial amplitude of the travelling mode, skin friction begins 
to rise much earlier at about R = 375 as would be expected from the comparison of 
figure 16 (b) and 16 (c) which shows that the mean flow distortion is higher in the latter 
case. Hence, a stronger interaction of the travelling and stationary modes leads to a 
higher skin-friction coefficient. Our results indicate that the angle between wall shear 
and inviscid free stream decreases as the disturbed flow enters the highly nonlinear 
stage in the three-dimensional boundary layer. 

5. High-frequency secondary instability 
A hot wire placed in a three-dimensional boundary layer, subject to crossflow 

instability, sees two types of unsteady disturbances. First, it captures an unsteady 
signal with a peak at a frequency Fl which coincides with the most-amplified frequency 
given by the linear stability theory. Tn the present case, for example, Fl z 1.2 x lop4 at 
R = 300 (see figure 5) .  The dimensional value of this frequency depends upon the flow 
parameters (unit Reynolds number, sweep, etc.). Poll (1989, for his swept-cylinder 
experiment, found F, to be 1500 Hz for the chord Reynolds number of I .2 x lo6 and 
sweep angle of 63". In Kohama et ul. (1991), Fl was close to 180 Hz and in Michel et 
al. (1985) Fl < 200. In these experiments, the hot wire also captures a second frequency 
F2 which is an order of magnitude larger than Fl. For example, F2 was 17500, 3500 
and 1000 Hz in the experiments of Poll (1985), Kohama et a/. (1991) and Michel et al. 
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FIGURE 19(a, b) .  For caption see facing page. 

(1985), respectively. In this section, we investigate this high-frequency instability in the 
present three-dimensional boundary layer. The problem is modelled here as the 
secondary instability of the new mean flow that is set up by the presence of a large- 
amplitude stationary crossflow vortex. 
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FIGURE 19. Variation of li,,,, in the ().,=)-plane for the wave interaction case with A, = 0.01 %. 
(a) R = 431, (b)  R = 500, (c) R = 600. 

We perform a secondary instability analysis locally, i.e. at a fixed Reynolds number 
and perform a temporal stability analysis. Jn order to do this analysis, we rotate the 
(s,z)-coordinates to a new system, x2,z, so that the x2 coordinate aligns with the 
crossflow vortex. At a streamwise location designated by the Reynolds number R, we 
ignore the curvature of the vortex and use the quasi-parallel approximation (we will 
provide a posteriori justification for these assumptions later) which allows us to 
consider a harmonic disturbance of the type 

Q(x,, j 2 ,  z,, t )  = $2(y2 ,  zg,  t )  ei("2-ce-fo2t), (5.1) 

where a2 and w, are the wavenumber and frequency of the secondary disturbance and 
y ,  = y .  Here, since we use the temporal stability concept, a2 is real and w2 is complex. 
If If),? > 0 (wz l  = Im(q)), then the secondary instability is present. A temporal stability 
approach has earlier been used by Herbert (1983) for secondary instability of TS waves 
and by Hall & Horseman (1991) for secondary instability of Gortler vortices. This 
approach can, at least, provide a qualitative picture of the secondary instability 
phenomenon. 

We superimpose (5.1) on the mean flow computed in $4.3 above, i.e. the mean flow 
constitutes the three-dimensional boundary layer as modulated by the presence of a 
nonlinear stationary crossflow vortex with initial amplitude of 0.1 %. This mean flow, 
when represented in the (x,, y,. z,) coordinate system, is a strong function of y2 and z2 
but a weak function of x2. Substituting the mean flow and the disturbance wave (5.1) 
in the incompressible Navier-Stokes equations, we obtain the following linearized 
equations : 
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where U,, V,, W, are the mean velocity components in the x2-, y z - ,  z,-directions, 
respectively, u2, v,, w, are the corresponding disturbance velocity components and p 2  
is the pressure. In (5.2)-(5.4) a &/ax,, c? V,/Zx,, a K/ax2 are small and can be neglected 
as numerical experiments indicate that they do not appreciably change the eigenvalue. 
However, ilV,/ily2 is of the same order as aWz/az2 and thus V, must not be set to zero. 
Dropping V, increases the growth rate by about 50 %. Equations (5.2)-(5.5) are partial 
differential equations which are subject to homogeneous conditions at the wall and free 
stream, i.e. 

( 5 . 6 ~ )  

u,+O, v,+O, wz+O as y2+co. (5.6b) 

u, = v2 = w 2  = 0, y ,  = 0, 
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The computational domain in the 2,-direction covers one wavelength of the stationary 
vortex and periodic boundary ,conditions are imposed in the z,-direction, i.e. 

( 5 . 7 4  

(5.7b) 

( 5 . 7 4  

where A, = 2n/(a,2 + p?$, a, and p ,  being the x and z wavenumbers of the stationary 
vortex. 

Equations (5.2W5.5) along with the boundary conditions (5.6)-(5.7) constitute an 
eigenvalue problem which we solve by using a Chebyshev collocation method in the yz-  
direction and a Fourier collocation method in the 2,-direction. The physical domain 
y ,  E [0, y2,$ is mapped on to a computational domain 7 E [ - 1 , 1 ]  such that the grid 
points are clustered near the wall and y ,  = Y , ~ ,  where yz, is the location where the 
secondary structure is concentrated. Since we do not stagger the mesh in the y2-  
direction, two additional boundary conditions are required, which we prescribe by 
evaluating the normal momentum equation at yz = 0 and y2,,,. 

The eigenvalue problem can be represented in the form 

A9 = w2B9 ( 5 . 8 )  

where B is a diagonal matrix and A is a square matrix of size (4N, - 6 )  N,  where Nu 
and N, are the number of collocation points in the yz- and 2,-directions, respectively. 
The eigenvalue problem (5.8) is solved by the QR method which yields all the 
eigenvalues of the discretized system. We test the accuracy of these eigenvalues by using 
the inverse Rayleigh iteration method. Among the computed eigenvalues, only a few 
have wZt > 0. Here, we discuss only one of these eigenvalues. 

Computations were fmt performed at R = 450 where the stationary crossflow 
disturbances had gained an amplitude of about 8 %  based upon the local inviscid 
velocity (see figure 17a). No secondary instability was found, i.e. all w,, < 0. The 
analysis was then repeated at R = 500 where the maximum 6-amplitude is about 17 YO 
and the stationary vortex is on its way to saturation (compare with figure 18). At this 
location the secondary instability is found but the growth rate is about the same as that 
of the nonlinear crossflow vortex. Finally, calculations were performed at R = 550, 
where figure 18 shows that the stationary vortex has a growth rate which is close to 
zero. The local maximum amplitude of the stationary vortex is about 22 YO. Secondary 
instability results for this Reynolds number are discussed next. 

The frequency (wzr) of the secondary instability and temporal growth rate (wag) are 
plotted in figure 23. The peak growth rate of wZi x 0.02 occurs at a, of about 0.6. At 
this location ozr is about 0.75 which amounts to an F, of 1.5 x We noted earlier 
that the most-amplified travelling crossflow disturbance has a frequency of about < x 
1.2 x ; hence, F, is an order of magnitude higher than F,, which is in agreement with 
the experiments mentioned above. The wavenumber of the stationary disturbance 
along the 2,-coordinate is about 0.5. Given that a, is 0.6, the angle of the secondary 
structure is about 50" with respect to the crossflow vortex. The secondary instability 
convects along the stationary vortex with the phase velocity of about 1.25 W . The 
relatively high amplitude of the stationary vortex required for secondary instability is 
in agreement with the results of Balachandar et al. (1992). 

The above calculations were made with N ,  = 41 and N, = 8. Since 8 collocation 
points in the spanwise direction may be too few, we repeated some of the calculations 
with N, = 16 and N ,  = 51. These results are also given in figure 23. We note that 

m 

2-2 
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FIGURE 23. Temporal growth rate and frequency of the secondary instability in the three-dimensional 
boundary layer at R = 550. Results for two different numerical resolutions are shown. 

although there is some movement in the eigenvalues, the results with the lower 
resolution are qualitatively correct, at least at high a2. At lower values of the 
wavenumber a2, there appears to be an intricate mode structure, the investigation of 
which would require the development of more efficient means of computing eigenvalues 
of very large matrices. 

The quasi-parallel approximation used in the above analysis can be justified since 
our results show that, in the rotated coordinate system, variations of &, V,, W, along 
xg are much smaller than the variations in y,, z,, and the x,-wavelength of the 
secondary instability is only about three times the boundary-layer thickness. In the 
non-dimensional units, this wavelength for the most-amplified secondary wave is about 
10. The secondary instability analysis shown in figure 23 is performed at R = 550. It 
is clear from figure 9 that the curvature of the vortex in the range of R = 550 f 5 can 
be ignored. 

The structure of the secondary instability is presented in figure 24 where the lu21 
eigenfunction is plotted along with the &-component of the meanflow in the (y,, ZJ- 

plane at R = 550. It is clear that this high-frequency instability resides on top of the 
stationary vortex with the maximum in luzl located near y ,  x 2.8. In contrast, the 
lower-frequency travelling crossflow disturbance is concentrated near the wall at 
y ,  x 1 (see figure 19). The high-frequency instability is inviscid in nature and it can 
be captured by dropping viscous terms in (5.2)-(5.4); however, since the basic flow is 
three-dimensional and varies with y 2  and z2 it is not possible to reduce the problem to 
a single partial differential equation. However, numerical experiments suggest that 
some qualitative features of the instability can be captured by considering just the 
&component of the mean flow in which case a single partial differential equation 
can be used resulting in substantial savings in computer time. 

The top view of the flow field that results by superimposing the secondary 
eigenstructure (with an amplitude of 5 %) on the mean flow (G, V,, W,) is depicted in 
figure 25 where the x,-velocity component is plotted at yz  = 2.82. Two periods in both 
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FIGURE 24. The x,-component of mean flow (dashed lines) and the lug( eigenfunction (solid lines). 
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FIGURE 25. The distribution of the x,-total velocity component in the (xz, 2,)-plane at y ,  = 2.82. 
The lug[ eigenfunction was assigned an amplitude of 5 %. 
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the x,- and z,-directions are shown. The dark patches in the picture correspond to the 
corotating structures which move in the x,-direction. A hot wire placed near the 
boundary-layer edge will detect this high-frequency disturbance but if the hot wire is 
located in the region between z2 = 5 and 10, for example, this instability will not be 
captured. Therefore, extreme care is needed in order to detect this secondary structure 
in an experiment. 

6. Conclusions 
We have investigated crossflow instability in a model three-dimensional boundary 

layer which has an exact solution to the incompressible Navier-Stokes equations. This 
consists of the swept-Hiemenz flow which forms near an attachment line. This flow is 
subject to Tollmien-Schlichting instability for small x, where x is the chordwise 
distance, provided the spanwise Reynolds number R > 583.1. However, this boundary 
layer becomes unstable to crossflow instability for x F 1 even for R < 583.1 Here, we 
have considered R = 250 and 500 for the linear stability and R = 500 for the nonlinear 
case. Both the linear and nonlinear stability as well as the wave interaction in this three- 
dimensional boundary layer are studied using parabolized stability equations (PSE). 
We also study secondary instability in this boundary layer. We find that the various 
features of the swept-wing boundary-layer transition are captured in the study of this 
model boundary layer. 

Our linear results show that non-parallel effects are destabilizing for crossflow 
disturbances. However, the magnitude of the effect depends upon R (more 
destabilization at lower R). Growth rates of stationary crossflow vortices computed 
from linear PSEs are in agreement with the results obtained from a Navier-Stokes 
simulation. 

Nonlinear development of a stationary crossflow vortex is also investigated for an 
initial amplitude of 0.1 %. The computed wall vorticity distribution shows the familiar 
streamwise streaks, in agreement with the surface oil-flow visualizations in swept-wing 
experiments. Other features of the stationary vortex development observed in the 
experiments (half-mushroom structure, highly inflected velocity profiles, vortex 
doubling, etc.) are also captured in our nonlinear PSE computations. 

Nonlinear interaction of stationary and travelling crossflow modes is also studied. 
When the initial amplitude of stationary vortex is large compared to the travelling 
mode, the stationary vortex dominates most of the downstream development. 
Eventually, however, the travelling mode becomes of the same order as the stationary 
mode. Interaction of the travelling mode with the harmonic of the stationary mode 
gives rise to another travelling mode with same frequency but negative spanwise 
wavenumber. Apparently, a triad resonance is set up at this stage. The situation 
changes when the initial amplitudes of the travelling and stationary modes are the 
same. Owing to its higher growth rate, the travelling mode dominates most of the 
downstream development and the growth of the stationary mode is suppressed. In this 
case, energy cascades into (2,2), (3,3) etc., modes which are harmonics of the primary 
(1,l) travelling mode. 

Growth rates of the stationary and travelling modes begin to depart from their linear 
values when the disturbance amplitude reaches about 4 YO. As the amplitude increases, 
the primary modes reach quasi-equilibrium states. Large mean flow distortion caused 
by the nonlinear disturbances yields a skin-friction value which is significantly above 
the laminar value. 

Finally, we use the two-dimensional eigenvalue approach to perform a secondary 
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instability analysis of the three-dimensional boundary-layer flow modulated by the 
presence of a nonlinear stationary crossflow vortex. We find that this mean flow is 
subject to an instability whose frequency is an order of magnitude higher than the 
frequency of the most-amplified travelling mode given by linear stability analysis of the 
boundary-layer profiles. A similar high-frequency disturbance was also observed in the 
experiments of Poll (1985) and Kohama et al. (1991). 

This work was sponsored under AFQSR Contract F49620-91 - G O O  14. Computer 
time was provided by NASA Langley Research Center. The authors thank their 
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unpublished data from Navier-Stokes calculations. 

REFERENCES 

ARNAL, D. & JUILLEN, J. C. 1987 AIAA Paper 87-1335. 
BALACHANDAR, S., STREETT, C. L. & MALIK, M. R. 1992 J. Fluid Mech. 242, 323. 
BERTOLOTTI, F. P., HERBERT, TH. & SPALART, P. R. 1992 J. Fluid Mech. 242, 441. 
BIPPES, H. 1991 In R. Aeronaut. Soc. Con$ on Boundary Layer Transition & Control, Cambridge, 

CHANG, C.-L., MALIK, M. R., ERLEBACHER, G. & HUSSAINI, M. Y. 1991 A I A A  Paper 91-1636. 
CHOUDHARI, M. M. 1993 Theor. Comput. Fluid Dyn. 5, 487. 
CHOUDHARI, M. M. & STREETT, C. 1990 AIAA Paper 90-5258. 
DAGENHARI, J. R., SARIC, W. S., Mousseux, M. C. & STACK, J. P. 1989 AIAA Paper 89-1892. 
FISCHER, T. M. & DALLMANN, U. 1991 Phys. Fluids A 3, 2378. 
GRAY, W. E. 1952 R. Aeronaut. Establ. Tech. Memo. (Aero) 256. 
GREGORY, N., STUART, J. T. & WALKER, W. S. 1955 Phil. Trans. R. SOC. Lond. A 248, 155. 
HALL, P. & HORSEMAN, N. J. 1991 J.  Fluid Mech. 232, 357. 
HALL, P., MALIK, M. R. & POLL, D. I. A. 1984 Proc. R. SOC. Lond. A 395, 229. 
HERBERT, TH. 1983 Phys. Fluids 26, 871. 
HERBERT, TH. 1991 AIAA Paper 91-0737. 
JOSLIN, R. D., STREETT, C. L. & CHANG, C.-L. 1992 N A S A  TP-3205. 
KOHAMA, Y. 1984 Acta Mechanica 50, 193. 
KOHAMA, Y. 1987 A I A A  Paper 87-1340. 
KOHAMA, Y., SARIC, W. S. & HOOS, J. A. 1991 In Proc. R. Aeronaut. Soc. Conf on Boundary Layer 

Transition & Control, Cambridge, UK, p. 4.1. 
MACK, L. M. 1985 AIAA Paper 85-0490. 
MALIK, M. R. 1986 In 10th h t l  Con$ on Numerical Methods in Fluid Dynamics (ed. F. G. Zhuang 

MALIK, M. R., CHUANG, S. & HUSSAINI, M. Y. 1982 Z. Angew. Math. Phys. 33, 189. 
MALIK, M. R. & LI, F. 1992 S A E  Paper 921991. 
MALIK, M. R. & LI, F. 1993 AIAA Puper 93-0077. 
MEYER, F. & KLEISER, L. 1988 In AGARD Con$ Proc. 438, p. 16-1. 
MICHEL, J. M., ARNAL, D. & JUILLEN, J. C. 1985 In Laminar Turbulent Transition (ed. V. V. 

M ~ L E R ,  B. 1989 Laminar-Turbulent Transition (ed. D. Arnal & R. Michel), p. 489. Springer. 
MULLER, B. & BIPPES, H. 1988 In AGARD Con$ Proc. 438, p. 13-1. 
PEERHOSSAINI, H. & WESFREID, J. E. 1988 Intl J. Heat Fluid Flow 9, 12. 
POLL, D. I. A. 1985 J .  FluidMech. 150, 329. 
REED, H. L. 1987 Ph,vs. Fluids 30, 3419. 

UK. 

& Y. L. Zhu), p. 455. Springer. 

Kozlov), p. 553. Springer. 



36 

SARIC, W. S., DAGENHART, J. R. & MOUSSEUX, M. C. 1989 In Numerical and Physical Aspects of 

SPALART, P. R. 1988 In AGARD Con$ Proc. 438, p. 5-1. 
SPALART, P. R. 1989 In Laminar-Turbulent Transition (ed. D. Arnal & R. Michel), p. 622. Springer. 
SWEARINGEN, J. D. & BLACKWELDER, R. F. 1987 J .  Fluid Mech. 182, 255. 
WILSON, S. D. R. & GLADWELL, I. 1978 J. FluidMech. 84, 517. 

M .  R.  Malik, F. Li and C.-L. Chang 

Aerodynamic Flows 4 (ed. T. Cebeci). Springer. 


